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Curvature-induced defect unbinding in toroidal geometries
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Toroidal templates such as vesicles with hexatic bond orientational order are discussed. The total energy
including disclination charges is explicitly computed for hexatic order embedded in a toroidal geometry.
Related results apply for tilt or nematic order on the torus in the one Frank constant approximation. Although
there is no topological necessity for defects in the ground state, we find that excess disclination defects are
nevertheless energetically favored for fat torii or moderate vesicle sizes. Some experimental consequences are
discussed.
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I. INTRODUCTION and orthonormal everywher@;-€=45;. As discussed, e.g.,

Amphiphilic molecules in water or oil solutions have beenPY David [13], the usual hexatic energy on such a curved
intensely investigated over the last decade in a variety ofurface can be written
settings. Amphiphiles in aqueous solution, under appropriate
conditions, have been experimentally observed to form 1 — N
vesicles with the topology of the sphere, tofd$ and even E= EKAJ d’xvg(d6 ~ Q) (d;6 - Q))g", (1)
higher genus surfacd®]. Other experimental studies have
focused on the phases of amphiphilic films as a function of ) . N _
temperature. It is by now well established that the high-WhereK, is the hexatic stiffness constamt](x;,x,) is the
temperature fluid phase goes into a smectit-& phase inverse of the metric tensor
through an intermediate rippled; phase. Within the s
phase itself there are several other phases characterized by IR JR
the degree of tilt and hexatic bond ord&r4]. This beautiful gi=—_
experimental work may provide insight into biological prob-
lems such as membrane fusifBj, where it has been argued
[6,7] that molecular tilt plays an important role. andg=det g;.

A remarkable understanding of the shapes of fluid am- The vector-potential-like functiof;(x;,X,) in Eq. (1) de-
phiphilic systems has been provided by physical methodscribes the geometric frustration which arises when vector or
based on the Helfrich HamiltoniafB] and its variations tensor order parameters are parallel transported on curved
[9,10. In Ref. [11], the problem of fluctuating smectic-C surfaces. This “spin connection” can be computed from co-
membranes, previously investigated in Rgif2] for planar  variant derivatives acting o& andé,; the “curl” of Q) (when
films, was addressed and predictions for the shape as a funappropriately defined on a curved surfaeeproportional to
tion of the elastic constants were presented. It was found thahe local Gaussian curvatuf&3].
toroidal vesicles were favored for some parameters. It was Disclinations can be inserted into the free eneftjyjust
assumed, however, that free disclinations are energeticallys in flat space. IN defects with chargeg;=+1 are present
unfavorable and may therefore be ignored unless, as in then the torus, we first define a defect densigs a function of
case of the sphere, topological constraints require them. x=(x;,x,), namely,

The main result of this paper is that disclinations can be
energetically favored over a wide range of parameters, even o N
when not required by topological constraints. We treat _ T Sy — VA
vesicles that are topologically toriclosed surfaces of genus S0 = 6 E{q'é( (x=)/Ng0x)- @
one. The Gauss-Bonnet theorem for torii requires a vanish- . ) S
ing total disclination charge. We assume hexatic order in the As discussed, e.g., in Reffl3-15, minimizing Eq.(1)
tangent plane of the torus, arising from an anisotropic liquigsubject to a fixed arrangementfdefects, leads to an order
phase of molecules with zero shear modulus(xif,x,) are  Parameter in terms of the inverse Laplaciai\1/
coordinates on the torus, specified in three dimensions by a

2

B (?Xi an

function Ii(xl,xz), local hexatic order can be described by a = - vV Q* @
bond angle field(x;,x,) (up to rotations by 2/6=60° de- - A

fined relative to the local tangent vectogge alﬁ and €,
« d,R. On the torus, this pair can be chosen to be nonsingulaBubstituting the previous equation into Ed) leads to
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FIG. 1. (Color onling Coordinateg «, 6) defining the torus.

=4 f dPx\g(x) f d?yVg(y)[s(x) = KK)IG(x,y)
2 FIG. 2. (Color onling Patch of positive Gaussian curvature on
P [ the torugshadeglsubtending an azimuthal angd®. The surface of
X[s(y) = K(y)]+ = f d>x\Vg(x)H?(x), (5) the torus is divided into regions of positive and negative Gaussian
2 curvature by the circles labeledl and B, on which the Gaussian
whereK(x) is the Gaussian curvature a@ix,y) is the in- curvature van_isht_ebafter D. Hilbert and S. Cohn-VosseBgometry
verse Laplacian on the torus. Up to subtractions which elimi&d the ImaginationChelsea, New York, 193¢
nate “zero modesi{see Sec. I, G(x,y) obeys
L obtained using theonformalcoordinates introduced in the
2 _ [~ i _ ey Appendix[16]. Upon replacingr by a new angular variable
ViGky) = =a\ag 31600y = %x-ynao. (@ (RPERITEL BT RenerbY 9

The first term of Eq.(5) arises directly from Eq(1) and Ricosa+R,
represents a kind of two-dimensional electrostatics in curved Cosp= """, 9
space. As discussed below, this electrostatics can lead to a
lower energy when positive and negative disclinations are@ne obtains a locallflat metric, which greatly simplifies the
placed at positions on the surface which approximatelycalculations.
match the local Gaussian curvature. To account for the bend- The “electrostatic” energy term in E¢p) favors approxi-
ing energy of the surface, we have added the se¢bietr  mately charge neutral configurations, with discrete disclina-
frich) term, where the bending rigidity coupling is=(1  tion charges canceling the smeared out Gaussian “curvature
-10) kgT for lipid bilayers andH(x) is the mean curvature. charge.” Although the full calculatiowith core energies
Defect core energies, which depend on short-distanctken into accounts subtle(see Sec. I, it is interesting to
physics not accounted for in this continuum approach, willestimate how many additional disclinations might be accom-
be added later. modated on a torus. In the torus shown in Fig. 2, the solid
Although a representation of the physics of geometricaﬁnd dashed circles divide the surface into regions of positive
frustration such as Eq1l) is possiblelocally on any smooth ~ and negative Gaussian curvature. Consider a wedge of angu-
surface, coordinates for genus one surfates torug can be  lar width A¢ on the outside wall of positive Gaussian curva-
found which admit such a representatiglobally. One such ture. The net curvature charge associated with this region is
coordinate system is shown in Fig. 1, where a point on the

[ ifi A0 w2
torus is specified by AK = J deJ da\@}((a) o .
[R; + R,cOs a]cos # 0 72 )
R,sin « (1+(Ry/Ry)cosa). Upon equatingAK to 2#/6, the charge

of a single disclination, we find that=27/12, indepen-
Here R, <R, so that the torus does not intersect itself. Thedently of R, and R,. Thus, 2r/A#=12 positive disclina-
Gaussian curvature associated with Ef.is a function ofe  tions would be required to completely compensate the cur-
only, vature of the outer wall. Similarly, 12 negative
disclinations would be required to completely compensate
) (8)  the negative curvature of the inner wall. This simple ar-
RR 1+&COSa gument neglects core energies and interactions between
v disclinations, effects which will cause the preferred num-
) . . ber of defect pairs to be less than 12.
Note thatK is positive on the outside wall of the torus — 1pq thermodynamic limit for torus dimensioRs andR,
(-7/2<a<m/2) and negative on the inside wall corresponds to the limit®;/a,— % andR,/a,— %, with the
(77/2 <a< 377/2). Although the(a, #) coordinate system aspect ratiod =R;/R; fixed, wherea, is a microscopic length
has a clear physical interpretation, most of our results arscale such as the particle spacing. Upon optimizingth a

COos
K(a) = -

1
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defect-free hexatic texture on the torus, one finds that a non-
zero hexatic stn‘fness constadj, pulls r above the Clifford
torus valuer =12 appropriate for liquid tori[11], so that the PR negative charge
resulting shape looks more like a bicycle tisee Sec. IV A i
Our results for defect energies are presented for fixaad a
given number ofM ~R;R,/a,2 of microscopic degrees of p“'“"@"rge '
freedom. It would be straightforward, however, to use the ‘ = H.
methods described here to optimize obketh r and possible
defect configurations for fixe.

Although we find that disclinations are always unfavor-
able in the “thermodynamic limit” of largéM, the critical
valueM =M, required to suppress them in the ground state is T
surprisingly large. Indeed, far=2, this number is of order
104 (see Fig. 12 Asr approaches 1 from above, i.e., in the
limit of “fat” torii, we find that M, exhibits a remarkably

strong divergencgsee Eq(51)], FIG. 3. (Color onlin® A plus (filled circle) and a minugfilled
squarg pair of charges between the plates of a two-dimensional
M. ~ 1 (12) circular capacitor is analogous to a plus-minus pair of disclinations
¢ (r-n¥* on a torus with the identifications given.

as treated in Sec. IV C. Becaubt, is so large, the toroidal
vesicles of Ref[1] would be quite likely to have disclina-
tions present in the ground state if hexatic order wer
present. Indeed, fdR;=5u (roughly the size of a red blood of freedomM tends to infinity.

cel), Rp=rR;~1.4R; anday=20 A (typical lipid spacing in The organization of the paper is as follows: an analogy to

vesicles we have(see Sec. IVB M=(87°/\3)(RiR,/  an electrostatic problem, aimed at providing a more intuitive

aj)=~4x10° which is much less than the critical value picture of the physics of curvature-induced defect unbinding,
M.~ 10" required to suppress disclinations. As discusseds introduced in Sec. II. In Sec. Ill the interaction among

above the interaction between hexatic order and thelefects is worked out in detail for toroidal topology. Predic-

Gaussian curvature of toroidal vesicles leadstoy2 and  tions for the total number of defects are provided in Sec. IV.

a smaller value oM. Vesicles with lipids in a liquid state The effects of both temperature and shape fluctuations are

could provide, however a toroidal template with\2 for  discussed in Sec. V.

adsorbed colloidal particles, similar to the spherical “col-

loidosomes” studied by Dinsmoret al. [17]. It may be

draped over a Gaussian “bump” for sufficiently large ratio of
height to width. In this case, defects remain an important
&eature of the ground state even when the number of degrees

possible to use polymerizable lipids to permanently fix the Il. ELECTROSTATIC ANALOGY
template aspect ratio at 2. It would be quite interesting to
study(with, say, confocal microscopyoth hexatic and crys- It is useful to illustrate the physics of defects on the torus

talline order in colloidal particle arraygl8] adsorbed on with a simple electrostatic analogy, illustrated in Fig. 3. A
such a template, as has already been done for colloids gppsitive and negative charge are placed between the plates of
spherical water droplets in dil9]. The colloid radius would a capacitor with circular cross section. The plus-minus pair
play the role of a microscopic scadg<R;,R, in this case. are the analogs of a plus-minus disclination dipole initially
Disclination defects in a crystalline ground state might welllocated on a zero curvature line of the tofgse Fig. 4 We
be accompanied by grain boundar[éd]. assume here that the charges are extended over a core radius
Although we focus here on hexatic order in toroidal ge-ag, which plays the role of a minimum separation. We expect
ometries, similar results should apply Xor-like models, as that this core radius is related to the mean particle separation
would be appropriate for vesicles composed of lipid bilayerson the torus. The net chargeQ+and -Q on the capacitor
with tilted moleculeg3,4]. Our results are relevant as well to plates represents the Gaussian curvature in(Igintegrated
twofold nematic order on a toroidal template. In both casespver the regions of the torus where it is positive and nega-
we expect qualitatively similar phenomenon, such as defectiéve, respectively. The linear charge density on the plates of
in the ground state, unless the total number of degrees dhe capacitor is thus given by.=Q/L., where L.
freedom exceeds a critical value. A precise equivalence is2m(R;+ R,). The lengthR; andR, for this capacitor cor-
possible in the one Frank constant approximatiaf]. As  respond to the torus radii defined in Fig. 1.
discussed in Sec. IV, defects in the ground state are more The competition between the work done by the electric
likely for fat torii in the case of nematiand hexatigorder.  field of the capacitofrepresenting regions of +/— Gaussian
Interesting results related to those here have recently beewrvature on the torysand the attraction of opposite-sign
obtained for “corrugated” topographies, which are flat at in-charges will dictate whether the disclinations separate or re-
finity and for which there is also no topological necessity formain tightly bound at separatioa Since the energy of a
defects in the ground staf1]. Specifically, it has been configuration with excess bound charges exceeds that for no
shown that defect pairs lower the energy of a hexatic phasexcess charges by an amount of order two core energies, this
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Ill. INTERACTING DEFECTS ON CURVED SURFACES
A. Green'’s function on the torus

For arbitrary coordinate£=(x;,X,) on the torus, the key
object in the energy, E@5), is the inverse Laplacian, which

is the solutionG(X,x’) to the equation

AG(x,x") = 8(x,x") = i (16)

Wherer the Laplacian is defined as in E(p), &(x,x’)
=(1/Vg)8(x—-x"), andA is the area of the torus,

FIG. 4. (Color onling lllustration of the calculation discussed in
the t_ext:_ a pI_us(fiIIed circle) and a mir_lus(filled square forrr_l a A= f dZX\/5=47T2R1R2. (17)
disclination dipole on one of the two circles of zero Gaussian cur-
vature. They are then pulled apart until they reach the maximum
curvature ling(plus) and minimum curvature linéminus. A constant is subtracted from th&function to eliminate a
“zero mode” which changes the area of the torus. As shown
criterion determines whether a separated plus-minus pair # the Appendix, the metric of a torus, with a suitable change
present in the ground state. of coordinates, is flat modulo an overall conformal factor
In this two-dimensional geometry, the electrostatic energyS€€ EA(A8)]. The inverse Laplacian may be computed by
of the two charges with separatiod 2nd chargee is given  considering the flat metricwhere the conformal factor is
by identically ong and its associated inverse Laplaciafx,x’)

from the formula
&, =€ In(dlag) + 2E,, (12

2,
whereE, represents a self-energy of an isolated charge, cor-  G(x,x’) = G(x,x’) —f ﬂ\,g(y)[é(x,y) +G(y,x)]
responding to the core energy of a disclination. There is an A

additional electrostatic force pulling the charges to the ca- g2 d2y’ .
pacitor plates, which leads to an additional energy +f Ty f Ty\y%vg(y’)G(y,y’). (18)
R, -d
EZ:QeIn< 1 d)' (13 As can be checked straightforwardI¢(x,x’) solves Eq.
R+ (16) as well as satisfying
The total energy is then
2. ,"_ " —
£=2me?Q - QeL + 2E,, (14) fd XVg(x)G(x,x") =0,
where
1 fdzx’vg(x’)G(x,x’) =0. (19)
Q= 2—In(d/ao),
a

Thus, Eq.(18) is indeed the inverse Laplacian, where the
R, +d conditions (19) ensure overall “charge neutrality” for any
L= In(R——d)' (15  disclinations present on the torus.
! The coordinates for the torus are shown in Fig. 1. Upon
The functionsQ and £ have a similar form to those we find Making the change of variables— ¢ via cosa=R;cos¢
in the exact calculation on the ton[me Eq.(32)] _Rz/Rl_R’Z\COS ®, described in the Appendlx, the inverse
Equation (14) illustrates very clearly the appearance of Laplacian G(x,x’) in conformal coordinates can be com-
two preferred locations; these beidga, (Where £~ 2E,) puted by first solving
and d=R, [where £=2E.+¢€ In(Ry/ap)-eQIn(R;+R,/R;

-R,)]. The relative strength of the first two terms will deter- . 2 1 218 L

mine the preferred location of the charge dipole. By taking ~ | sinhpdy + sinhp ¢ G(6,¢]6",¢")

a, small enough, forR;>R,, the attractive charge-charge 1

term will dominate and defects will not be favored. For any =56-0,0-¢') - (20)

finite ay, on the other hand, defect unbinding will be favored (2m)?’
in the limit R,— R]. This is precisely what we find, up to
numerical constants, in our treatment of disclination unbindwhere sinhp=yr?-1 andr is the aspect rati®,/R, of the

ing on the torus. torus. The straight-forward solution,
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—~ 1 *_-2n
G<°><e,¢|0’,go’):——ln{(sinhm(e—o’)z PN (R
4 (2m?2\ sinhp=, n?
1 oo o0
+ — -¢')?|, 21 2 €2 tanh
(s <p)} (21) X pze.zm,,), -
coshp,-; n coshp

isfiesAGQ=8(6- 0", p—¢' i
satisfiesAG (6=6",¢=¢"), but is not periodic, i.e. which can then be used to evaluate E).

6(0)(0+ 27k, 0|0, ¢") # 6(0)(0,(p +2m[6',¢")
B. Energetics of defects on a torus

~(© ror
# G000 ¢"), 22 The total energy, Eq5), also contains a bending rigidity
for arbitrary integerk andn. In addition the Laplacian act- term which, for a torus with aspect ratieR;/R,, is
ing on 6(0)(0,go|0’ ,¢') fails to give the constant term on the 222
right-hand side of Eq(20). Both these deficiencies are rem- Er= K. (28)
edied by defining vre-1

. 1 If we were to minimize this term alone, we would firrd
G(6,¢|60 ,¢')=— 2—2 In[sinh p(6+ 27k)? =2, the so-called Clifford torus. The Gauss-Bonnet theo-
T kn rem for a torus reads

+

1
sinhp ¢ " 2“”)2} +Clp), (29 J g K(x) =0, (29

where the constart(p) is determined by imposing that the 414 with our choice of Green’s functions, Ex).insures that
inverse Laplacian exhibits the correct short-distance singue sum of disclination “chargesy; satisfies
larity [following from Eq. (21)] in the limit 6— #" and ¢

— ¢'. Standard analytical techniquég2,23 allow one to N
perform the sum indicated in E¢R3), giving 2=0 (30)
i=1
G(6,¢|0",¢") so that, as previously noted, no defects are required topologi-
0-0 +r(o-¢) 2 cally. The defect charges here take on the valyest1,+2,
sinhp ﬂ1<2—, T) ..., withg;=£1 corresponding to the elementary defects with
=——In We rotations +27/6 in the hexatic order parameter.
4w 47| (7)) With the Green’s function in hand, the hexatic energy of a
1 -2 set of disclination charges on a toiise first part of Eq(1)]
+— ( ) (24 can thus be written explicitly
2 sinhp\ 27
2K g K
where 7=i/sinh p. The functions®, and » are the Theta g=T0A% 0 QX0 X)) TEAS gL (%)
function and Dedekindy function, respectively, defined 18 i 3 ia
by [24] N
=t +D+ (E q?) E., (30
9 (v,7) = —i S (- pnemrn- 1122 g2miv(n-1/2) (25) i=1
= where the defects interact with each other according to
and : .
ﬂ<0i_6j+|(€0i_¢j) i )2
o ‘ 1 "\ 27 2@ sinhp’sinhp
7(7) = "4 (1 -7, (26 QUxix)=-7—In i \[®
" ™ 7]( sinh )
The inverse Laplacian of E¢18) thus becomes ) P
1 "
_ 2 __(u> , (32)
G(6,¢/0',¢) =G(0,6]0/,¢) - - 2 sinhpl - 2m
(2m)

and interact with the background Gaussian curvature
“charge” according to

S
x( : > S [cosing) + cogng’)]

sinhp,-; N

1
1 L 0= o o) 39
e p- ¢
+ 2 ——[codng) + cos{nqo’)]) _ .
coshppz; N The “spin wave” part of the frustrated hexatic energy
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1 27K E.~ cKp, 40

D= EKA(ZW)ZE_’) = ’—Z—A (34) ¢ A (40
reari-1 wherec is a dimensionless parameter characterizing the size

iS present even W|thout defects and Supp'ements the bend”% the d|SCI|nat|0n core energy. In our numel’lca| CaICUIat|OnS

rigidity term, Eq.(28). The core energy term in E¢81) will ~ We takec=0.1. _ _ _
be considered in more detail in Sec. IV. If the torus is coated wittM particles, an effective aver-

age particle spacingp (assuming a local triangular lattice

for simplicity) may be defined from the area per particle
C. Energetics of defects on a sphere

o 2
It is instructive to compare our results for toroidal vesicles \“_3a% - ATRIR, - ARy _
with the corresponding results for spherical vesicles. The in- 2 M M
teraction potentia{32) for a sphere is

(41)

We shall assume tha;~ap, so Eq.(41) relates the total

1 1-copB; number of particle$/ to the minimum plus-minus pair sepa-
- | =51
Q(Xi, X)) = 47.,"‘( 2 ) (39 ration appearing in Eq(38).

Upon including both the bending rigidity and the core

whereg;; is the geodesic distance, for a sphere of unit radiusenergies, the total energy for charge +1 defects on a rigid,
between points; andx;. The functionZ(x) and the constant yndeformed torus takes the form

D can both be set to zero on the sphere.

The Gauss-Bonnet theorem for spherical topology reads Kifo2m2 N N 27N
E=NE+ ?A ?E 2 0i9; (X, %) = ?E AL (X))
f d?XgK(x) = 4, (36) = =
4772 27r?
yielding the constraint + N K 1 (42

N
S =12 (37) where& depends on the lattice spaciag through the core
= ' energy Eq(40) as well as the constraint that the defect spac-

ing cannot be smaller thaas. In our calculations the latter
constraint is accounted for by forbidding any two defects
from approaching within the distaneg or, alternatively, by
assuming that any two defects closer ttgnmerge into a
single defect with total charge the sum of the individual

Before presenting a detailed analysis of the implicationssharges of the two defects.
of the Hamiltonian(31) for defects on a torus we must con-  Only the potential(Q) and curvaturg(£) terms depend
front the issue of core energies. The short-distance behavigxplicitly on the defect positions and charges. For fixad
of the defect potentia® [Eq. (32)] implies that a plus-minus andR,, therefore, the total number of defects in the ground
pair of disclinations located as in Fig. 4 on a circle of fixed State is independent of both the bending rigidity and the con-
azimuthal angled and geodesic separatiod Bave an energy stantD in Eq. (34).
< The defect-defect interaction is determined through the
_Ram O-function defined in Eq(32). For two opposite sign defects
E="18 [In(Refg) + Vi(d/Ry)] + 26, B8 e energy is attractive for all separations at constards

h ft bsorbi . / b shown in Fig. 5. If only this term was present, the attraction
where, after absorbing various constantid/Ry) may be ;6,14 pring both charges as close as possible, binding all

viewed as the interaction potential between the two disclinagiscjinations into dipoles which have a higher energy than a
tions and the ternt, (reflecting short-distance physjcBas  jefect.free configuration. Thus, if no other terms were
been added by hand. Forap<2d<R, V\(d/Rp)  present, the ground state would be defect free.

=In(2d/Rp). The torus radiusR, therefore drops out in The defect-curvature interactiof favors the appearance
this limit and we recover the resuli=K,m/18 In(2d/ag)  of additional defects. This term acts like an electric field
+2E, for a disclination pair in flat space. The disclination pulling the positive/negative disclinations into regions of
core radiusg, is the distance(of order the spacing be- positive/negative Gaussian curvature, respectively, similar to
tween moleculgsat which continuum elasticity breaks the electrostatic analogy discussed in Sec. Il. As shown in
down. In general, energies of isolated plus and minus deFig. 5, if this were the only term present, isolated plus and
fects may contain additiondfinite) contributions due to  minus disclination charges are always energetically favored,
global interactions with the underlying metr[@1] and  wijth the lowest energy arising when they are located at the
due to asymmetric core structure. Here, we simply abSOfl@egions of absolute maximum Gaussian curvature.

these contributions into energiés andE_ and set The total energy is a competition between defect attrac-
(39) tion and curvature-induced unbinding, as shown in Fig. 5,

IV. GROUND STATES OF HEXATIC TOROIDAL
VESICLES

+E, = . ;
E-+E =25, where the potential shows a double well, corresponding to
We will henceforth assume that the attractive defect-defect interaction minimum and the at-
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> N=16
S
[
a |
N=4
20}
N=12
B N=8
12 . I . ! , ! 18 ! . I . I ;
0 1 2 3 1 2 3 4
o o
FIG. 5. (Color onling Various contributions to the energjn FIG. 6. (Color onling The total energyin units of Ka/2) for

units of Ka/2) with aspect ratior=v2 for a disclination dipole aspect ratia=y5/4 for varying numbers of defects angd=R,/4.
separated an angular distanealong the path shown in Fig. 4. The The bending energy at fixed is subtracted off. The disclination
long dashed line is the energy in the absence of defects. Theore energy is taken to be &4, which is 0.2 in the above units
dashed-dotted line is the defect-defect interaction as a function dicorresponding t@=0.1).

the separation of the charges. The dashed line is the curvature-

defect interaction energy as a function of separation, and the conorus, similar to a bicycle tire, is optimal. This picture
tinuous line is the total energy. The core energy contribution, comghanges when defects are included.

puted from Eq(40), is very small on this scale. The bending energy

is subtracted for clarity.

B. Ground states of defective hexatic toroidal vesicles

trachye Gauss[an curvature minimum. In Fig. 5, the cuva- - e general ground state for arbitrary aspect ratio may be
ture field dominates and additional defects appear in th?ietermined numerically using E¢42). For simplicity, we

ground state, but the general result for whether defecty,q,are the energies of configurations with and without de-
should or should not be expected is a function of the COMacts for a fixed aspect ratio

energyE, the hexaf[ic stifinesk,, the torus aspect ratio_ We first performed the following calculation: a set Mf
=R1/Ry, and the raticR,/ap 0f macroscopic to MiCroscopic it charge disclinationé\/2 positive ancdN/2 negative are
cutoff. placed in opposite-sign pairs on a circle of zero Gaussian
curvature. Each pair is then pulled apart at constant azi-
A. Defect-free hexatic toroidal vesicles muthal angled until the plugminus disclinations reach the
In the absence of defects the total energy following fromoutexinnen rim of the torus, respectively. This is illustrated
Eq.(31) is in Fig. 4 for the simplest cadd=2.
We discuss our results for two regimes of disclination
_ 2m°Ka + 27°r? 43 core energy. Core energies corresponding tooefficients
Cr+rz-1 "\,'rz_ 1 (49 less than 1/10 have almost no effect on the energy balance
since the elastic energy is already quite large. For definite-
a result first obtained in Refl1l]. The optimal value of  ness the small core energy regime will be illustrated dor

resulting from minimizing this energy is the solution of =1/10. Our results are shown in Figs. 6-8 for the three
aspect ratiosr=+5/4, r=y2 (the Clifford torug and r
(r2=1)¥2-r(r2= 1) + —r(r2=2) = 0, (44)  =2.69. We have sdR,/ap=4, so that the number of degrees
Ka of freedom [see EQq. (41)] on these torii is M
which read in the limit of large and small hexatic stiffness =87/ V31(R;/ap)*=800, 1000, and 2000, respectively. In
[11], each case the addition of defects lowers the energy. Note that
_ the energy at maximum separatioa=1) first decreases,
r=v2, Ka<k, and then increases witN. The optimal number of defect
(45) pairs (N/2) is 5, 6, and 7 for Figs. 6—8, respectively. This
Ka number is less than the naive estimate of 12 in the introduc-
r=14/5., Ka>«. tion due to repulsive defect interaction energies on the inner

and outer walls of the torus.
If the hexatic stiffness is much smaller than the bending ri- The typical situation for large core energies is illustrated
gidity, the Clifford torus(r=+2) is the optimal geometry. If, for c=1. It is only for core energies of this order that we find
on the other hand, the hexatic stiffness dominates, then a thiqualitatively different behavior from the small core energy
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40

18

14142 T
r \ r=1.118

N=0

N=24

Energy
Energy

N=4
N=20
N=8

N=16
N=12

FIG. 7. (Color onling The total energy, as in Fig. 6, but for  FIG. 9. (Color onling The total energyin units ofK,/2) for a
the Clifford torus which has aspect ratie 2. torus with aspect ratio=5/4 for varying numbers of defects with
— R,/ap=100/7r. The disclination core energy is taken to Bg
regime. Our results are plotted in Fig.(8=15/4) and Fig.  which is 2 in the above unitorresponding te=1). The bending
10 (r=12). BecauseR,/ap= 100/ 7 =32 in these plots, we energy at fixed is subtracted.
now haveM =52 000 andM =67 000, respectively. Even
with such a large core energy, defects are present in theored, is plotted as a function of the aspect ratio in Fig. 12.
ground state with a preferred number of pait§2=3 for ~ As the aspect ratio=R;/R,— 1*, M diverges, suggesting
Fig. 9 and a smaller number for Fig. 10. With this value ofthat any torus will possess defects if sufficiently fat. We pro-
R,/ap the torus is defect free for larger vide an rough analytic argument along this line in the fol-
Note that for fixed aspect ratio the preferred number ofowing section.
defects drops for larger numbers of particles when the core Although fat torii(with r = 1) tend to favor defects in the
energy is large: compare Fig. 9 to Fig. 7. To study this poinground state, the maximum number of defects favored for a
further we have determined the total number of defects in th@iven aspect ratio is a subtle question. To see this, note that
ground state as a function of the number of particles. Outhe constrained minimization discussed above leads to a ring
results are shown in Fig. 11, using=(87%/\3)r(R,/ap)? of N/2 positive disclination charges on the outer wall of the
and assumingy=ap. Although a torus always becomes de- torus, and a smaller ring dfl/2 negative charges on the
fect free in the thermodynamic limiR,/ap— (with r  inner wall. Asr— 1%, negative charges end up being very
=R,/R, fixed), torii with moderate aspect ratio only become close in the final configuration, with a considerable repulsive

defect free for a remarkably large number of particles, whicHEN€rgy cost.
may be as large as 10for r=12! To allow the system to reduce this energy, we have con-

To make the last point more transparent, the critical numSidered the modified calculation illustrated in Flg 13. The
ber of particlesM., above which defects are no longer fa- initial configuration starts fronboth circles of zero curva-

20 r=1.4142
r=2.69258
8
N=0 N=16
N=24
> >
) =)
s g
c I
ui \ w
N=4 N=12
6L N=20
N=8 N=8
_ N=0
N=16 N=4
L | L | L | N=12 L | L | L | L
1
1 2 3 4 50 1 2 3 4
o o

FIG. 8. (Color onling The total energy, as in Fig. 6, but for FIG. 10. (Color onling The total energy, as in Fig. 9, but for
aspect ratia =2.6926. aspect ratia =2.
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20

15

N (number of defects)
5

r=2.236068
51 i
-
i L]
| . . . .
‘:04 10° 102 FIG. 13. (Color onling lllustration of the calculation discussed
M{Mumbet of particiss) in the text: a plus disclinatio(filled circle) and a minus disclination

(filled squarg form a defect dipole on one of the two zero-curvature
FIG. 11. (Color onling The preferred number of defects as a Circles of the torus. They are then pulled apart in the direction of the
function of the total number of particles for three aspect ratios. Thenaximum curvature lingplus) and the minimum curvature line
disclination core energy is taken to be Rl The dashed line cor-  (Minus, respectively.

responds to the configuration in Fig. 4. . )
C. Analytical argument for defects in the ground state

for aspect ratio r near 1

ture, alternating plus-minus defect pairs between them. Let us consider a +/- disclination dipole on a zero cur-
When the separation variabte= 7 the configuration is the vature circle of the torus. Imagine slowly pulling the dipole
same as in the previous case. A typical plot of the energy igpart until the individual ¢) disclinations reach the outer
shown in Fig. 14. In this plot, the minimal configurations (+)/inner (-) rim of the torus, respectively. The total energy
(with @# ) correspond tobuckled or staggered rings of in this configuration is dominated by the attraction of each
defects, displaced from the circles of maximum or minimumdefect to the corresponding region of same sign curvature
curvature, as illustrated in Fig. 15. The final position is asince the defects are too far apart for the defect-defect inter-
compromise between the electrostatic repulsion and the a@ction to be important. The total energy following from Eq.
traction to the Gaussian curvature basins. With the extra dd31) is therefore
grees of freedom allowed by buckling, the energies are al- - r+1
ways lower than the simple ring configurations of Figs. 6 and E~E%C=- EKA In(—), (46)

: r-1
9. Note that staggering allows more defects to be squeezed
into the ground state: the optimal numbiei/2 of defect where we have sep;=0 and¢,= in Eq. (33). Upon ap-
pairs is 7 in Fig. 14, as opposed W 2~4-5 in Fig. 6. proximating the defect-pair energy by its flat space value

28

261
10

— Egoo/Ka=0 24

ore’ AT

- ECofe/KA=O'1

m-m Eg /K,=0.1 (Estimated)

22

20

Energy
>

2 L | L 1 L 1 1 8

r (aspect ratio)
FIG. 14. (Color onling Plot of the energy for the path described
FIG. 12. (Color onling The critical number of particles, above by Fig. 13. The disclination core energy is taken to beKQ.IThe
which defects are no longer favored, as a function of the toroidahspect ratio is=\5/4 andR,/a=50. The optimal number of defect
aspect ratio for vanishing core enerdyue) andc=0.1(green. The pairs in the final “buckled ring” configuration iN*/2=7 for this
analytic estimate foc=0.1 is plotted as solid red squares. M = 127000 particle configuration.
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* =2 and tilt order top=1. A hypothetical “tetradic phase”
with a fourfold liquid crystalline symmetry25,26 would
correspond top=4. The generalization of Eq48) for a
minimally charged defect-antidefect pair wiphfold symme-
try reads

r+1 2 RZ

E=——Kpln| — |+ ZKpIn| = | +2E.. (52
p r-1 p 8o

This yields a critical particle number

872 - 2p°E +1\%
MC:—Eexp{L}r(r—> . (53
\‘J

7TKA r-1

The critical number of particles above which defects no

longer appear in the ground state is therefore lower for coat-

ings of the torus by textures of lower symmetry. Sirke
FIG. 15. (Color onling The typical ground state configuration MUst exceedr, by an amount of ordea, for a physical torus

for parameters that favor defect proliferation. The arrows indicatdSe€e Fig. 1, (r—1)nin=(a/R). Hence, M, diverges like

the displacement of the equilibrium defect position from the maxi-(Ry/20)?" in the limit of an extremely fat torus. Upon not-

mal curvature circles. ing thatM ~ (Ry/ag)?, we see that typicall <M. when-

everR,/ay>1. Thus, defects are anevitablepart of the

- R, g'round state for sufficiently fat torii in all cases, except pos-
Eqd = 1—8KA In(g), (47)  sibly for p=1.
we find a total energy V. TEMPERATURE AND SHAPE FLUCTUATIONS
T r+1 T R, A. Connection with two-dimensional melting
£=- EKA In(:) ¥ EKA In(—) vk (49 The renormalized Frank constant for a film in the hexatic

: . . ) phase has the temperature depend¢@bg
If we assume, consistent with our numerical evaluatio@of

that the constant correction to E@.7) is negligible, therg, Ka(T) (T
can be interpreted as a disclination core energy. As discussed keT - a2’ (54)

in Sec. IV we have seE_+E,=2FE;, whereE_ andE, are
defect energies appropriate to the outer and inner walls of thehere &, is the correlation length. The correlation length

torus, respectively. Equatioid8) changes sign for itself behaves in the neighborhood of the hexatic to fluid
transition temperaturg, like
RS -36E.[[r+1\°
; =ex K 1) (49 : b (55
A - +~ ex —_— .
[~ V’|T - T||1/2

Using M=812/3r(R,/ay)?, we conclude that defects are S
favored for The bending rigidity has been shown to have a much weaker

temperature dependeni®7,28. Near the hexatic-fluid tran-
872 -726. | [r+1\? sition, therefore, the ratio oK,/ « diverges, which should
M=M= 3¢ . (50
\‘J

A produce larger values ot
For toroidal vesicles these results change in two important
For the representative valig=0.1K,, we therefore find ways: both the finite size and the Gaussian curvature of the
12 torus must be taken into account. The finite area of the torus
M.~ 4 &(E> (51) limits the growth of the correlation length, viz.,
=4 .

r-1 £= 7R, (56)

7TKA

A comparison with our numerical results fdl, for both
vanishing core energy arte,=0.1K, is shown in Fig. 12—
the agreement is excellent. This result also establishes that Ka(T) Ry \2
excess defects are present in the ground state for any fixed T = ;) )
particle number provided the torus is sufficiently fat. De- B
fects could thus be an important feature of hexatic textureso that the Frank constant no longer diverges. It is possible
for realistic vesicle sizes. that the effects of Gaussian curvature will even lilj{/  to

It is interesting to generalize these formulas gdold  smaller values. As discussed in the introduction, it may be
symmetric order parametefé&1] on the surface of a torus. possible to “freeze-in” an aspect ratie= V2 by using lipid
Here, hexatic order correspondsge 6, nematic order tg bilayers with only short range order as a toroidal template.

or, equivalently,

(57)
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B. Fluctuating hexatic membranes APPENDIX

In Ref. [29] the properties of a fluctuating hexatic mem- !N the angular coordinatefs, a} of Fig. 1 (with 0<6
brane were investigated. It was found that the long-distanc& 27,0=< @< 2m) the parametrization
behavior is governed by a new fixed point, characteristic of a x = (R, + R,cOS a)c0S 6,
crinkled phase intermediate between a crumpled and a rigid
phase. Within a largel expansion, the new fixed point has

the property y = (R + R,cos a)sin 4,
Ky 4d K
“A=—p0 “2=4atd=3. (58)

K 3 K

z=R,sin a, (A1)

defines a torus as the locus of poirtsy,z) that satisfy

It can be shown that for the value pfcorresponding to this  (VX*+y?—Ry)?+z°=R;% The dimensionless aspect ratio
ratio of elastic constants, additional defects should be

present. The aspect ratio as a function of the elastic constants r= &’ (A2)
for a defect-free configuration givésee Eq.(45)] Ry
r~2 (59) is constrained to be greater than one for torii which do not

self-intersect. The metric is given by
a Clifford torus, which we have shown contains additional 5 ) )
defects in the ground state. ds*=R{(r + cos )’d¢? + da?}. (A3)

Upon introducing a new angle variabdg0< ¢ < 2) via
C. Nonaxisymmetric torus

In this paper, only axisymmetric tori have been consid- cosa = %, (A4)
ered. It is well established from the work of Evaid] that, r-cose
in the absence of disclinations, nonaxisymmetric toriodal 9eEq. (A1) becomes
ometries are favored for a wide range of parameters. In the
nonaxisymmetric torus, the density of Gaussian curvature is _asinhp cos¢
enhanced in several regions, and therefore, from the ideas X= coshp - cos¢’
developed in this paper, defects will be even more favored
than for the axisymmetric case. A natural question is then asinhp sin 6
how the precise toroidal shapes are affected by such defects, = (A5)
and whether the axisymmetric or nonaxisymmetric cases are coshp - cos¢
favored. Those are important questions that will be investi-
gated elsewhere. _asing (A6)

= L
coshp —cose
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