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I. INTRODUCTION

Amphiphilic molecules in water or oil solutions have been
intensely investigated over the last decade in a variety of
settings. Amphiphiles in aqueous solution, under appropriate
conditions, have been experimentally observed to form
vesicles with the topology of the sphere, torus[1], and even
higher genus surfaces[2]. Other experimental studies have
focused on the phases of amphiphilic films as a function of
temperature. It is by now well established that the high-
temperature fluid phase goes into a smectic-CLb8 phase
through an intermediate rippledPb8 phase. Within theLb8
phase itself there are several other phases characterized by
the degree of tilt and hexatic bond order[3,4]. This beautiful
experimental work may provide insight into biological prob-
lems such as membrane fusion[5], where it has been argued
[6,7] that molecular tilt plays an important role.

A remarkable understanding of the shapes of fluid am-
phiphilic systems has been provided by physical methods
based on the Helfrich Hamiltonian[8] and its variations
[9,10]. In Ref. [11], the problem of fluctuating smectic-C
membranes, previously investigated in Ref.[12] for planar
films, was addressed and predictions for the shape as a func-
tion of the elastic constants were presented. It was found that
toroidal vesicles were favored for some parameters. It was
assumed, however, that free disclinations are energetically
unfavorable and may therefore be ignored unless, as in the
case of the sphere, topological constraints require them.

The main result of this paper is that disclinations can be
energetically favored over a wide range of parameters, even
when not required by topological constraints. We treat
vesicles that are topologically torii(closed surfaces of genus
one). The Gauss-Bonnet theorem for torii requires a vanish-
ing total disclination charge. We assume hexatic order in the
tangent plane of the torus, arising from an anisotropic liquid
phase of molecules with zero shear modulus. Ifsx1,x2d are
coordinates on the torus, specified in three dimensions by a

function RW sx1,x2d, local hexatic order can be described by a
bond angle fieldusx1,x2d (up to rotations by 2p /6=60°) de-

fined relative to the local tangent vectorseW1~]1RW and eW2

~]2RW . On the torus, this pair can be chosen to be nonsingular

and orthonormal everywhere;eW i ·eW j =di j . As discussed, e.g.,
by David [13], the usual hexatic energy on such a curved
surface can be written

E =
1

2
KAE d2xÎgs]iu − Vids] ju − V jdgij , s1d

whereKA is the hexatic stiffness constant,gijsx1,x2d is the
inverse of the metric tensor

gij =
] RW

] xi
·

] RW

] xj
s2d

andg=det gij .
The vector-potential-like functionV jsx1,x2d in Eq. (1) de-

scribes the geometric frustration which arises when vector or
tensor order parameters are parallel transported on curved
surfaces. This “spin connection” can be computed from co-
variant derivatives acting oneW1 andeW2; the “curl” of V (when
appropriately defined on a curved surface) is proportional to
the local Gaussian curvature[13].

Disclinations can be inserted into the free energy(1) just
as in flat space. IfN defects with chargesqj = ±1 are present
on the torus, we first define a defect densitys as a function of
x;sx1,x2d, namely,

ssxd =
2p

6 o
j=1

N

qjd
s2dsx − xjd/Îgsxjd. s3d

As discussed, e.g., in Refs.[13–15], minimizing Eq. (1)
subject to a fixed arrangement ofN defects, leads to an order
parameter in terms of the inverse Laplacian 1/D:

u = −
=mVm

D
. s4d

Substituting the previous equation into Eq.s1d leads to
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E =
KA

2
E d2xÎgsxd E d2yÎgsydfssxd − KsxdgGsx,yd

3fssyd − Ksydg +
k

2
E d2xÎgsxdH2sxd, s5d

whereKsxd is the Gaussian curvature andGsx,yd is the in-
verse Laplacian on the torus. Up to subtractions which elimi-
nate “zero modes”ssee Sec. IIId, Gsx,yd obeys

¹x
2Gsx,yd =

1
Îg

]ihÎggij] jjGsx,yd = ds2dsx − yd/Îgsxd. s6d

The first term of Eq.s5d arises directly from Eq.s1d and
represents a kind of two-dimensional electrostatics in curved
space. As discussed below, this electrostatics can lead to a
lower energy when positive and negative disclinations are
placed at positions on the surface which approximately
match the local Gaussian curvature. To account for the bend-
ing energy of the surface, we have added the secondsHel-
frichd term, where the bending rigidity coupling isk<s1
−10d kBT for lipid bilayers andHsxd is the mean curvature.
Defect core energies, which depend on short-distance
physics not accounted for in this continuum approach, will
be added later.

Although a representation of the physics of geometrical
frustration such as Eq.(1) is possiblelocally on any smooth
surface, coordinates for genus one surfaces(the torus) can be
found which admit such a representationglobally. One such
coordinate system is shown in Fig. 1, where a point on the
torus is specified by

RW sa,ud = 1fR1 + R2cosagcosu

fR1 + R2cosagsin u

R2sin a
2 . s7d

Here R2,R1 so that the torus does not intersect itself. The
Gaussian curvature associated with Eq.s7d is a function ofa
only,

Ksad =
cosa

R1R2F1 +
R2

R1
cosaG . s8d

Note that K is positive on the outside wall of the torus
s−p/2 ,a, p/2d and negative on the inside wall
sp/2 ,a, 3p/2d. Although thesa ,ud coordinate system
has a clear physical interpretation, most of our results are

obtained using theconformalcoordinates introduced in the
Appendixf16g. Upon replacinga by a new angular variable
ws0øwø2pd defined by

cosw =
R1cosa + R2

R1 + R2cosa
, s9d

one obtains a locallyflat metric, which greatly simplifies the
calculations.

The “electrostatic” energy term in Eq.(5) favors approxi-
mately charge neutral configurations, with discrete disclina-
tion charges canceling the smeared out Gaussian “curvature
charge.” Although the full calculation(with core energies
taken into account) is subtle(see Sec. IV), it is interesting to
estimate how many additional disclinations might be accom-
modated on a torus. In the torus shown in Fig. 2, the solid
and dashed circles divide the surface into regions of positive
and negative Gaussian curvature. Consider a wedge of angu-
lar width Du on the outside wall of positive Gaussian curva-
ture. The net curvature charge associated with this region is

DK =E
0

Du

duE
−p/2

p/2

daÎgKsad = 2sDud, s10d

where we have used Eq. s8d and Îg=R1R2
(1+sR2/R1dcosa). Upon equatingDK to 2p /6, the charge
of a single disclination, we find thatDu=2p /12, indepen-
dently of R1 and R2. Thus, 2p /Du=12 positive disclina-
tions would be required to completely compensate the cur-
vature of the outer wall. Similarly, 12 negative
disclinations would be required to completely compensate
the negative curvature of the inner wall. This simple ar-
gument neglects core energies and interactions between
disclinations, effects which will cause the preferred num-
ber of defect pairs to be less than 12.

The thermodynamic limit for torus dimensionsR1 andR2
corresponds to the limitsR1/a0→` andR2/a0→`, with the
aspect ratior =R1/R2 fixed, wherea0 is a microscopic length
scale such as the particle spacing. Upon optimizingr with a

FIG. 1. (Color online) Coordinatessa ,ud defining the torus.

FIG. 2. (Color online) Patch of positive Gaussian curvature on
the torus(shaded) subtending an azimuthal angleDu. The surface of
the torus is divided into regions of positive and negative Gaussian
curvature by the circles labeledA and B, on which the Gaussian
curvature vanishes[after D. Hilbert and S. Cohn-Vossen,Geometry
and the Imagination(Chelsea, New York, 1952)].
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defect-free hexatic texture on the torus, one finds that a non-
zero hexatic stiffness constantKA pulls r above the Clifford
torus valuer =Î2 appropriate for liquid torii[11], so that the
resulting shape looks more like a bicycle tire(see Sec. IV A).
Our results for defect energies are presented for fixedr and a
given number ofM ,R1R2/a0

2 of microscopic degrees of
freedom. It would be straightforward, however, to use the
methods described here to optimize overboth r and possible
defect configurations for fixedM.

Although we find that disclinations are always unfavor-
able in the “thermodynamic limit” of largeM, the critical
valueM =Mc required to suppress them in the ground state is
surprisingly large. Indeed, forr =Î2, this number is of order
1011! (see Fig. 12). As r approaches 1 from above, i.e., in the
limit of “fat” torii, we find that Mc exhibits a remarkably
strong divergence[see Eq.(51)],

Mc ,
1

sr − 1d12, s11d

as treated in Sec. IV C. BecauseMc is so large, the toroidal
vesicles of Ref.f1g would be quite likely to have disclina-
tions present in the ground state if hexatic order were
present. Indeed, forR1=5m sroughly the size of a red blood
celld, R2=rR1<1.4R1 anda0=20 Å stypical lipid spacing in
vesiclesd, we have ssee Sec. IV Bd M =s8p2/Î3dsR1R2/
a0

2d<43108 which is much less than the critical value
Mc,1011 required to suppress disclinations. As discussed
above, the interaction between hexatic order and the
Gaussian curvature of toroidal vesicles leads tor .Î2 and
a smaller value ofMc. Vesicles with lipids in a liquid state
could provide, however, a toroidal template withr =Î2 for
adsorbed colloidal particles, similar to the spherical “col-
loidosomes” studied by Dinsmoreet al. [17]. It may be
possible to use polymerizable lipids to permanently fix the
template aspect ratio atr =Î2. It would be quite interesting to
study(with, say, confocal microscopy) both hexatic and crys-
talline order in colloidal particle arrays[18] adsorbed on
such a template, as has already been done for colloids on
spherical water droplets in oil[19]. The colloid radius would
play the role of a microscopic scalea0!R1,R2 in this case.
Disclination defects in a crystalline ground state might well
be accompanied by grain boundaries[14].

Although we focus here on hexatic order in toroidal ge-
ometries, similar results should apply toXY-like models, as
would be appropriate for vesicles composed of lipid bilayers
with tilted molecules[3,4]. Our results are relevant as well to
twofold nematic order on a toroidal template. In both cases,
we expect qualitatively similar phenomenon, such as defects
in the ground state, unless the total number of degrees of
freedom exceeds a critical value. A precise equivalence is
possible in the one Frank constant approximation[20]. As
discussed in Sec. IV, defects in the ground state are more
likely for fat torii in the case of nematic(and hexatic) order.
Interesting results related to those here have recently been
obtained for “corrugated” topographies, which are flat at in-
finity and for which there is also no topological necessity for
defects in the ground state[21]. Specifically, it has been
shown that defect pairs lower the energy of a hexatic phase

draped over a Gaussian “bump” for sufficiently large ratio of
height to width. In this case, defects remain an important
feature of the ground state even when the number of degrees
of freedomM tends to infinity.

The organization of the paper is as follows: an analogy to
an electrostatic problem, aimed at providing a more intuitive
picture of the physics of curvature-induced defect unbinding,
is introduced in Sec. II. In Sec. III the interaction among
defects is worked out in detail for toroidal topology. Predic-
tions for the total number of defects are provided in Sec. IV.
The effects of both temperature and shape fluctuations are
discussed in Sec. V.

II. ELECTROSTATIC ANALOGY

It is useful to illustrate the physics of defects on the torus
with a simple electrostatic analogy, illustrated in Fig. 3. A
positive and negative charge are placed between the plates of
a capacitor with circular cross section. The plus-minus pair
are the analogs of a plus-minus disclination dipole initially
located on a zero curvature line of the torus(see Fig. 4). We
assume here that the charges are extended over a core radius
a0, which plays the role of a minimum separation. We expect
that this core radius is related to the mean particle separation
on the torus. The net charge +Q and −Q on the capacitor
plates represents the Gaussian curvature in Eq.(5), integrated
over the regions of the torus where it is positive and nega-
tive, respectively. The linear charge density on the plates of
the capacitor is thus given byr±=Q/L±, where L±
=2psR17R2d. The lengthsR1 andR2 for this capacitor cor-
respond to the torus radii defined in Fig. 1.

The competition between the work done by the electric
field of the capacitor(representing regions of +/− Gaussian
curvature on the torus) and the attraction of opposite-sign
charges will dictate whether the disclinations separate or re-
main tightly bound at separationa. Since the energy of a
configuration with excess bound charges exceeds that for no
excess charges by an amount of order two core energies, this

FIG. 3. (Color online) A plus (filled circle) and a minus(filled
square) pair of charges between the plates of a two-dimensional
circular capacitor is analogous to a plus-minus pair of disclinations
on a torus with the identifications given.
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criterion determines whether a separated plus-minus pair is
present in the ground state.

In this two-dimensional geometry, the electrostatic energy
of the two charges with separation 2d and chargee is given
by

E1 = e2 lnsd/a0d + 2Ec, s12d

whereEc represents a self-energy of an isolated charge, cor-
responding to the core energy of a disclination. There is an
additional electrostatic force pulling the charges to the ca-
pacitor plates, which leads to an additional energy

E2 = Qe lnSR1 − d

R1 + d
D . s13d

The total energy is then

E = 2pe2Q − QeL + 2Ec, s14d

where

Q =
1

2p
lnsd/a0d,

L = lnSR1 + d

R1 − d
D . s15d

The functionsQ andL have a similar form to those we find
in the exact calculation on the torus[see Eq.(32)].

Equation (14) illustrates very clearly the appearance of
two preferred locations; these beingd=a0 (whereE<2Ec)
and d=R2 [where E=2Ec+e2 lnsR2/a0d−eQ lnsR1+R2/R1

−R2d]. The relative strength of the first two terms will deter-
mine the preferred location of the charge dipole. By taking
a0 small enough, forR1.R2, the attractive charge-charge
term will dominate and defects will not be favored. For any
finite a0, on the other hand, defect unbinding will be favored
in the limit R2→R1

−. This is precisely what we find, up to
numerical constants, in our treatment of disclination unbind-
ing on the torus.

III. INTERACTING DEFECTS ON CURVED SURFACES

A. Green’s function on the torus

For arbitrary coordinatesxW =sx1,x2d on the torus, the key
object in the energy, Eq.(5), is the inverse Laplacian, which

is the solutionGsxW ,x8W d to the equation

DGsx,x8d = dsx,x8d −
1

A
, s16d

where the Laplacian is defined as in Eq.s6d, dsx ,x8d
=s1/Îgddsx−x8d, andA is the area of the torus,

A ;E d2xÎg = 4p2R1R2. s17d

A constant is subtracted from thed function to eliminate a
“zero mode” which changes the area of the torus. As shown
in the Appendix, the metric of a torus, with a suitable change
of coordinates, is flat modulo an overall conformal factor
fsee Eq.sA8dg. The inverse Laplacian may be computed by
considering the flat metricswhere the conformal factor is

identically oned and its associated inverse LaplacianĜsx ,x8d
from the formula

Gsx,x8d = Ĝsx,x8d −E d2y

A
ÎgsydfĜsx,yd + Ĝsy,x8dg

+E d2y

A
E d2y8

A
ÎgsydÎgsy8dĜsy,y8d. s18d

As can be checked straightforwardly,Gsx ,x8d solves Eq.
s16d as well as satisfying

E d2xÎgsxdGsx,x8d = 0,

E d2x8Îgsx8dGsx,x8d = 0. s19d

Thus, Eq.(18) is indeed the inverse Laplacian, where the
conditions (19) ensure overall “charge neutrality” for any
disclinations present on the torus.

The coordinates for the torus are shown in Fig. 1. Upon
making the change of variablesa→w via cosa;R1cosw
−R2/R1−R2cosw, described in the Appendix, the inverse

Laplacian Ĝsx ,x8d in conformal coordinates can be com-
puted by first solving

− Ssinh r]u
2 +

1

sinh r
]w

2DĜsu,wuu8,w8d

= dsu − u8,w − w8d −
1

s2pd2 , s20d

where sinhr=Îr2−1 andr is the aspect ratioR1/R2 of the
torus. The straight-forward solution,

FIG. 4. (Color online) Illustration of the calculation discussed in
the text: a plus(filled circle) and a minus(filled square) form a
disclination dipole on one of the two circles of zero Gaussian cur-
vature. They are then pulled apart until they reach the maximum
curvature line(plus) and minimum curvature line(minus).

BOWICK, NELSON, AND TRAVESSET PHYSICAL REVIEW E69, 041102(2004)

041102-4



Ĝs0dsu,wuu8,w8d = −
1

4p
lnFssinh rdsu − u8d2

+
1

sinh r
sw − w8d2G , s21d

satisfiesDĜs0d=dsu−u8 ,w−w8d, but is not periodic, i.e.,

Ĝs0dsu + 2pk,wuu8,w8d Þ Ĝs0dsu,w + 2pnuu8,w8d

Þ Ĝs0dsu,wuu8,w8d, s22d

for arbitrary integersk andn. In addition the Laplacian act-

ing on Ĝs0dsu ,wuu8 ,w8d fails to give the constant term on the
right-hand side of Eq.s20d. Both these deficiencies are rem-
edied by defining

Ĝsu,wuu8,w8d = −
1

2p
o
k,n

lnFsinh rsu + 2pkd2

+
1

sinh r
sw + 2pnd2G + Csrd, s23d

where the constantCsrd is determined by imposing that the
inverse Laplacian exhibits the correct short-distance singu-
larity ffollowing from Eq. s21dg in the limit u→u8 and w
→w8. Standard analytical techniquesf22,23g allow one to
perform the sum indicated in Eq.s23d, giving

Ĝsu,wuu8,w8d

= −
1

4p
ln3sinh rUq1Su − u8 + tsw − w8d

2p
,tDU2

4p2uhstdu6
4

+
1

2 sinhr
Sw − w8

2p
D2

, s24d

where t= i /sinh r. The functionsq1 and h are the Theta
function and Dedekindh function, respectively, defined
by f24g

q1sn,td = − i o
n=−`

n=+`

s− 1dneiptsn − 1/2d2e2pinsn−1/2d s25d

and

hstd = e2pit/24p
n=1

`

s1 − e2pintd. s26d

The inverse Laplacian of Eq.(18) thus becomes

Gsu,wuu8,w8d = Ĝsu,wuu8,w8d −
2

s2pd2

3S 1

sinh r
o
n=1

`
e−nr

n2 fcossnwd + cossnw8dg

+
1

coshr
o
n=1

`
e−nr

n
fcossnwd + cossnw8dgD

+
2

s2pd2S 1

sinh r
o
n=1

`
e−2nr

n2

+
2

coshr
o
n=1

`
e−2nr

n

tanhr

coshr
o
m=1

`

e−2mrD , s27d

which can then be used to evaluate Eq.s5d.

B. Energetics of defects on a torus

The total energy, Eq.(5), also contains a bending rigidity
term which, for a torus with aspect ratior =R1/R2, is

Ek =
2p2r2

Îr2 − 1
k. s28d

If we were to minimize this term alone, we would findr
=Î2, the so-called Clifford torus. The Gauss-Bonnet theo-
rem for a torus reads

E d2xÎg Ksxd = 0, s29d

and, with our choice of Green’s functions, Eq.s1d insures that
the sum of disclination “charges”qi satisfies

o
i=1

N

qi = 0 s30d

so that, as previously noted, no defects are required topologi-
cally. The defect charges here take on the valuesqi = ±1,±2,
. . ., with qi = ±1 corresponding to the elementary defects with
rotations ±2p /6 in the hexatic order parameter.

With the Green’s function in hand, the hexatic energy of a
set of disclination charges on a torus[the first part of Eq.(1)]
can thus be written explicitly

E =
p2KA

18 o
iÞ j

N

qiqjQsxi,x jd −
pKA

3 o
i=1

N

qiLsxid

+ D + So
i=1

N

qi
2DEc, s31d

where the defects interact with each other according to

Qsxi,x jd = −
1

4p
ln1Uq1Sui − u j

2p
+

iswi − w jd
2p sinh r

,
i

sinh r
DU2

4p2UhS i

sinh r
DU6 2

+
1

2 sinhr
Swi − w j

2p
D2

, s32d

and interact with the background Gaussian curvature
“charge” according to

Lsxd = lnS 1

coshr − cosw
D . s33d

The “spin wave” part of the frustrated hexatic energy
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D =
1

2
KAs2pd2e−r =

2p2KA

r + Îr2 − 1
s34d

is present even without defects and supplements the bending
rigidity term, Eq.s28d. The core energy term in Eq.s31d will
be considered in more detail in Sec. IV.

C. Energetics of defects on a sphere

It is instructive to compare our results for toroidal vesicles
with the corresponding results for spherical vesicles. The in-
teraction potential(32) for a sphere is

Qsxi,x jd = −
1

4p
lnS1 − cosbi j

2
D , s35d

wherebi j is the geodesic distance, for a sphere of unit radius,
between pointsxi andx j. The functionLsxd and the constant
D can both be set to zero on the sphere.

The Gauss-Bonnet theorem for spherical topology reads

E d2xÎgKsxd = 4p, s36d

yielding the constraint

o
i=1

N

qi = 12. s37d

IV. GROUND STATES OF HEXATIC TOROIDAL
VESICLES

Before presenting a detailed analysis of the implications
of the Hamiltonian(31) for defects on a torus we must con-
front the issue of core energies. The short-distance behavior
of the defect potentialQ [Eq. (32)] implies that a plus-minus
pair of disclinations located as in Fig. 4 on a circle of fixed
azimuthal angleu and geodesic separation 2d have an energy

E =
KAp

18
flnsR2/a0d + VIsd/R2dg + 2Ec, s38d

where, after absorbing various constants,VIsd/R2d may be
viewed as the interaction potential between the two disclina-
tions and the termEc sreflecting short-distance physicsd has
been added by hand. Fora0!2d!R2, VIsd/R2d
. lns2d/R2d. The torus radiusR2 therefore drops out in
this limit and we recover the resultE=KAp /18 lns2d/a0d
+2Ec for a disclination pair in flat space. The disclination
core radiusa0 is the distancesof order the spacing be-
tween moleculesd at which continuum elasticity breaks
down. In general, energies of isolated plus and minus de-
fects may contain additionalsfinited contributions due to
global interactions with the underlying metricf21g and
due to asymmetric core structure. Here, we simply absorb
these contributions into energiesE+ and E− and set

E− + E+ = 2Ec. s39d

We will henceforth assume that

Ec < cKA, s40d

wherec is a dimensionless parameter characterizing the size
of the disclination core energy. In our numerical calculations
we takec=0.1.

If the torus is coated withM particles, an effective aver-
age particle spacingaP (assuming a local triangular lattice
for simplicity) may be defined from the area per particle

Î3

2
aP

2 =
4p2R1R2

M
=

4p2R2
2r

M
. s41d

We shall assume thata0<aP, so Eq.s41d relates the total
number of particlesM to the minimum plus-minus pair sepa-
ration appearing in Eq.s38d.

Upon including both the bending rigidity and the core
energies, the total energy forN charge ±1 defects on a rigid,
undeformed torus takes the form

E = NEc +
KA

2
S2p2

9 o
i=1

N

o
j.i

N

qiqjQsxi,x jd −
2p

3 o
i=1

N

qiLsxid

+
4p2

r + Îr2 − 1
D + k

2p2r2

Îr2 − 1
, s42d

whereE depends on the lattice spacinga0 through the core
energy Eq.s40d as well as the constraint that the defect spac-
ing cannot be smaller thanaP. In our calculations the latter
constraint is accounted for by forbidding any two defects
from approaching within the distanceaP or, alternatively, by
assuming that any two defects closer thanaP merge into a
single defect with total charge the sum of the individual
charges of the two defects.

Only the potentialsQd and curvaturesLd terms depend
explicitly on the defect positions and charges. For fixedR1
andR2, therefore, the total number of defects in the ground
state is independent of both the bending rigidity and the con-
stantD in Eq. (34).

The defect-defect interaction is determined through the
Q-function defined in Eq.(32). For two opposite sign defects
the energy is attractive for all separations at constantu, as
shown in Fig. 5. If only this term was present, the attraction
would bring both charges as close as possible, binding all
disclinations into dipoles which have a higher energy than a
defect-free configuration. Thus, if no other terms were
present, the ground state would be defect free.

The defect-curvature interactionL favors the appearance
of additional defects. This term acts like an electric field
pulling the positive/negative disclinations into regions of
positive/negative Gaussian curvature, respectively, similar to
the electrostatic analogy discussed in Sec. II. As shown in
Fig. 5, if this were the only term present, isolated plus and
minus disclination charges are always energetically favored,
with the lowest energy arising when they are located at the
regions of absolute maximum Gaussian curvature.

The total energy is a competition between defect attrac-
tion and curvature-induced unbinding, as shown in Fig. 5,
where the potential shows a double well, corresponding to
the attractive defect-defect interaction minimum and the at-
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tractive Gaussian curvature minimum. In Fig. 5, the curva-
ture field dominates and additional defects appear in the
ground state, but the general result for whether defects
should or should not be expected is a function of the core
energyEc, the hexatic stiffnessKA, the torus aspect ratior
=R1/R2, and the ratioR2/aP of macroscopic to microscopic
cutoff.

A. Defect-free hexatic toroidal vesicles

In the absence of defects the total energy following from
Eq. (31) is

E =
2p2KA

r + Îr2 − 1
+ k

2p2r2

Îr2 − 1
, s43d

a result first obtained in Ref.f11g. The optimal value ofr
resulting from minimizing this energy is the solution of

sr2 − 1d3/2 − rsr2 − 1d +
k

KA
rsr2 − 2d = 0, s44d

which read in the limit of large and small hexatic stiffness
f11g,

r = Î2, KA ! k,
s45d

r =ÎKA

2k
, KA @ k.

If the hexatic stiffness is much smaller than the bending ri-
gidity, the Clifford torussr =Î2d is the optimal geometry. If,
on the other hand, the hexatic stiffness dominates, then a thin

torus, similar to a bicycle tire, is optimal. This picture
changes when defects are included.

B. Ground states of defective hexatic toroidal vesicles

The general ground state for arbitrary aspect ratio may be
determined numerically using Eq.(42). For simplicity, we
compare the energies of configurations with and without de-
fects for a fixed aspect ratior.

We first performed the following calculation: a set ofN
unit charge disclinations(N/2 positive andN/2 negative) are
placed in opposite-sign pairs on a circle of zero Gaussian
curvature. Each pair is then pulled apart at constant azi-
muthal angleu until the plus(minus) disclinations reach the
outer(inner) rim of the torus, respectively. This is illustrated
in Fig. 4 for the simplest caseN=2.

We discuss our results for two regimes of disclination
core energy. Core energies corresponding toc coefficients
less than 1/10 have almost no effect on the energy balance
since the elastic energy is already quite large. For definite-
ness the small core energy regime will be illustrated forc
= 1/10. Our results are shown in Figs. 6–8 for the three
aspect ratios:r =Î5/4, r =Î2 (the Clifford torus) and r
=2.69. We have setR2/aP=4, so that the number of degrees
of freedom [see Eq. (41)] on these torii is M
=8p2/Î3rsR2/aPd2.800, 1000, and 2000, respectively. In
each case the addition of defects lowers the energy. Note that
the energy at maximum separationsa=pd first decreases,
and then increases withN. The optimal number of defect
pairs sN/2d is 5, 6, and 7 for Figs. 6–8, respectively. This
number is less than the naive estimate of 12 in the introduc-
tion due to repulsive defect interaction energies on the inner
and outer walls of the torus.

The typical situation for large core energies is illustrated
for c=1. It is only for core energies of this order that we find
qualitatively different behavior from the small core energy

FIG. 5. (Color online) Various contributions to the energy(in
units of KA/2) with aspect ratior =Î2 for a disclination dipole
separated an angular distancea along the path shown in Fig. 4. The
long dashed line is the energy in the absence of defects. The
dashed-dotted line is the defect-defect interaction as a function of
the separation of the charges. The dashed line is the curvature-
defect interaction energy as a function of separation, and the con-
tinuous line is the total energy. The core energy contribution, com-
puted from Eq.(40), is very small on this scale. The bending energy
is subtracted for clarity.

FIG. 6. (Color online) The total energy(in units of KA/2) for
aspect ratior =Î5/4 for varying numbers of defects andaP=R2/4.
The bending energy at fixedr is subtracted off. The disclination
core energy is taken to be 0.1KA, which is 0.2 in the above units
(corresponding toc=0.1).
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regime. Our results are plotted in Fig. 9sr =Î5/4d and Fig.
10 sr =Î2d. BecauseR2/aP= 100/p .32 in these plots, we
now haveM <52 000 andM <67 000, respectively. Even
with such a large core energy, defects are present in the
ground state with a preferred number of pairsNp /2.3 for
Fig. 9 and a smaller number for Fig. 10. With this value of
R2/aP the torus is defect free for largerr.

Note that for fixed aspect ratio the preferred number of
defects drops for larger numbers of particles when the core
energy is large: compare Fig. 9 to Fig. 7. To study this point
further we have determined the total number of defects in the
ground state as a function of the number of particles. Our
results are shown in Fig. 11, usingM =s8p2/Î3drsR2/aPd2

and assuminga0=aP. Although a torus always becomes de-
fect free in the thermodynamic limitR2/aP→` (with r
=R1/R2 fixed), torii with moderate aspect ratio only become
defect free for a remarkably large number of particles, which
may be as large as 1011 for r =Î2!

To make the last point more transparent, the critical num-
ber of particlesMc, above which defects are no longer fa-

vored, is plotted as a function of the aspect ratio in Fig. 12.
As the aspect ratior =R1/R2→1+, Mc diverges, suggesting
that any torus will possess defects if sufficiently fat. We pro-
vide an rough analytic argument along this line in the fol-
lowing section.

Although fat torii (with r *1) tend to favor defects in the
ground state, the maximum number of defects favored for a
given aspect ratio is a subtle question. To see this, note that
the constrained minimization discussed above leads to a ring
of N/2 positive disclination charges on the outer wall of the
torus, and a smaller ring ofN/2 negative charges on the
inner wall. As r →1+, negative charges end up being very
close in the final configuration, with a considerable repulsive
energy cost.

To allow the system to reduce this energy, we have con-
sidered the modified calculation illustrated in Fig. 13. The
initial configuration starts fromboth circles of zero curva-

FIG. 7. (Color online) The total energy, as in Fig. 6, but for
the Clifford torus which has aspect ratior =Î2.

FIG. 8. (Color online) The total energy, as in Fig. 6, but for
aspect ratior =2.6926.

FIG. 9. (Color online) The total energy(in units of KA/2) for a
torus with aspect ratior =Î5/4 for varying numbers of defects with
R2/aP=100/p. The disclination core energy is taken to beKA

which is 2 in the above units(corresponding toc=1). The bending
energy at fixedr is subtracted.

FIG. 10. (Color online) The total energy, as in Fig. 9, but for
aspect ratior =Î2.
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ture, alternating plus-minus defect pairs between them.
When the separation variablea=p the configuration is the
same as in the previous case. A typical plot of the energy is
shown in Fig. 14. In this plot, the minimal configurations
(with aÞp) correspond tobuckled or staggered rings of
defects, displaced from the circles of maximum or minimum
curvature, as illustrated in Fig. 15. The final position is a
compromise between the electrostatic repulsion and the at-
traction to the Gaussian curvature basins. With the extra de-
grees of freedom allowed by buckling, the energies are al-
ways lower than the simple ring configurations of Figs. 6 and
9. Note that staggering allows more defects to be squeezed
into the ground state: the optimal numberNp /2 of defect
pairs is 7 in Fig. 14, as opposed toN/2<4−5 in Fig. 6.

C. Analytical argument for defects in the ground state
for aspect ratio r near 1

Let us consider a +/− disclination dipole on a zero cur-
vature circle of the torus. Imagine slowly pulling the dipole
apart until the individual +s−d disclinations reach the outer
s+d/inner s−d rim of the torus, respectively. The total energy
in this configuration is dominated by the attraction of each
defect to the corresponding region of same sign curvature
since the defects are too far apart for the defect-defect inter-
action to be important. The total energy following from Eq.
(31) is therefore

E < Ed−c = −
p

3
KA lnS r + 1

r − 1
D , s46d

where we have setw1=0 andw2=p in Eq. s33d. Upon ap-
proximating the defect-pair energy by its flat space value

FIG. 11. (Color online) The preferred number of defects as a
function of the total number of particles for three aspect ratios. The
disclination core energy is taken to be 0.1KA. The dashed line cor-
responds to the configuration in Fig. 4.

FIG. 12. (Color online) The critical number of particles, above
which defects are no longer favored, as a function of the toroidal
aspect ratio for vanishing core energy(blue) andc=0.1(green). The
analytic estimate forc=0.1 is plotted as solid red squares.

FIG. 13. (Color online) Illustration of the calculation discussed
in the text: a plus disclination(filled circle) and a minus disclination
(filled square) form a defect dipole on one of the two zero-curvature
circles of the torus. They are then pulled apart in the direction of the
maximum curvature line(plus) and the minimum curvature line
(minus), respectively.

FIG. 14. (Color online) Plot of the energy for the path described
by Fig. 13. The disclination core energy is taken to be 0.1KA. The
aspect ratio isr =Î5/4 andR2/a=50. The optimal number of defect
pairs in the final “buckled ring” configuration isNp /2=7 for this
M <127000 particle configuration.
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Edd <
p

18
KA lnSR2

a0
D , s47d

we find a total energy

E = −
p

3
KA lnS r + 1

r − 1
D +

p

18
KA lnSR2

a0
D + 2Ec. s48d

If we assume, consistent with our numerical evaluation ofQ,
that the constant correction to Eq.s47d is negligible, thenEc
can be interpreted as a disclination core energy. As discussed
in Sec. IV we have setE−+E+=2Ec, whereE− and E+ are
defect energies appropriate to the outer and inner walls of the
torus, respectively. Equations48d changes sign for

R2
c

a0
= expH− 36Ec

KA
JS r + 1

r − 1
D6

. s49d

Using M =8p2/Î3rsR2/a0d2, we conclude that defects are
favored for

M & Mc =
8p 2

Î3
expH− 72Ec

pKA
JrS r + 1

r − 1
D12

. s50d

For the representative valueEc=0.1KA, we therefore find

Mc < 4.6rS r + 1

r − 1
D12

. s51d

A comparison with our numerical results forMc for both
vanishing core energy andEc=0.1KA is shown in Fig. 12—
the agreement is excellent. This result also establishes that
excess defects are present in the ground state for any fixed
particle number provided the torus is sufficiently fat. De-
fects could thus be an important feature of hexatic textures
for realistic vesicle sizes.

It is interesting to generalize these formulas top-fold
symmetric order parameters[11] on the surface of a torus.
Here, hexatic order corresponds top=6, nematic order top

=2 and tilt order top=1. A hypothetical “tetradic phase”
with a fourfold liquid crystalline symmetry[25,26] would
correspond top=4. The generalization of Eq.(48) for a
minimally charged defect-antidefect pair withp-fold symme-
try reads

E = −
2p

p
KA lnS r + 1

r − 1
D +

2p

p2 KA lnSR2

a0
D + 2Ec. s52d

This yields a critical particle number

Mc =
8p2

Î3
expH− 2p2Ec

pKA
JrS r + 1

r − 1
D2p

. s53d

The critical number of particles above which defects no
longer appear in the ground state is therefore lower for coat-
ings of the torus by textures of lower symmetry. SinceR1
must exceedR2 by an amount of ordera0 for a physical torus
ssee Fig. 1d, sr −1dmin=sa0/R2d. Hence, Mc diverges like
sR2/a0d2p in the limit of an extremely fat torus. Upon not-
ing thatM ,sR2/a0d2, we see that typicallyM !Mc when-
ever R2/a0@1. Thus, defects are aninevitablepart of the
ground state for sufficiently fat torii in all cases, except pos-
sibly for p=1.

V. TEMPERATURE AND SHAPE FLUCTUATIONS

A. Connection with two-dimensional melting

The renormalized Frank constant for a film in the hexatic
phase has the temperature dependence[25],

KAsTd
kBT

,
j+

2sTd
a0

2 , s54d

where j+ is the correlation length. The correlation length
itself behaves in the neighborhood of the hexatic to fluid
transition temperatureTl like

j+ , expH b
ÎuT − Tlu1/2J . s55d

The bending rigidity has been shown to have a much weaker
temperature dependencef27,28g. Near the hexatic-fluid tran-
sition, therefore, the ratio ofKA/k diverges, which should
produce larger values ofr.

For toroidal vesicles these results change in two important
ways: both the finite size and the Gaussian curvature of the
torus must be taken into account. The finite area of the torus
limits the growth of the correlation length, viz.,

j & pR2, s56d

or, equivalently,

KAsTd
kBT

& SpR2

a0
D2

, s57d

so that the Frank constant no longer diverges. It is possible
that the effects of Gaussian curvature will even limitKA/k to
smaller values. As discussed in the introduction, it may be
possible to “freeze-in” an aspect ratior <Î2 by using lipid
bilayers with only short range order as a toroidal template.

FIG. 15. (Color online) The typical ground state configuration
for parameters that favor defect proliferation. The arrows indicate
the displacement of the equilibrium defect position from the maxi-
mal curvature circles.
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B. Fluctuating hexatic membranes

In Ref. [29] the properties of a fluctuating hexatic mem-
brane were investigated. It was found that the long-distance
behavior is governed by a new fixed point, characteristic of a
crinkled phase intermediate between a crumpled and a rigid
phase. Within a larged expansion, the new fixed point has
the property

KA

k
=

4d

3
⇒

KA

k
= 4 atd = 3. s58d

It can be shown that for the value ofr corresponding to this
ratio of elastic constants, additional defects should be
present. The aspect ratio as a function of the elastic constants
for a defect-free configuration givesfsee Eq.s45dg

r , Î2, s59d

a Clifford torus, which we have shown contains additional
defects in the ground state.

C. Nonaxisymmetric torus

In this paper, only axisymmetric tori have been consid-
ered. It is well established from the work of Evans[11] that,
in the absence of disclinations, nonaxisymmetric toriodal ge-
ometries are favored for a wide range of parameters. In the
nonaxisymmetric torus, the density of Gaussian curvature is
enhanced in several regions, and therefore, from the ideas
developed in this paper, defects will be even more favored
than for the axisymmetric case. A natural question is then
how the precise toroidal shapes are affected by such defects,
and whether the axisymmetric or nonaxisymmetric cases are
favored. Those are important questions that will be investi-
gated elsewhere.
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APPENDIX
In the angular coordinateshu ,aj of Fig. 1 (with 0øu

ø2p,0øaø2p) the parametrization

x = sR1 + R2cosadcosu,

y = sR1 + R2cosadsin u,

z= R2sin a, sA1d

defines a torus as the locus of pointssx,y,zd that satisfy
sÎx2+y2−R1d2+z2=R2

2. The dimensionless aspect ratior

r ;
R1

R2
, sA2d

is constrained to be greater than one for torii which do not
self-intersect. The metric is given by

ds2 = R2
2hsr + cosad2du2 + da2j. sA3d

Upon introducing a new angle variablews0øwø2pd via

cosa =
r cosw − 1

r − cosw
, sA4d

Eq. sA1d becomes

x =
a sinh r cosu

coshr − cosw
,

y =
a sinh r sin u

coshr − cosw
, sA5d

z=
a sin w

coshr − cosw
, sA6d

wherea andr are defined byR2=a/sinh r and

r = coshrsr = lnhr + Îr2 − 1jd. sA7d

In these coordinates, the metric Eq.sA3d becomes

ds2 = R2
2S r2 − 1

r − cosw
D2Sdu2 +

dw2

r2 − 1
D . sA8d

The metric is now conformally flat, i.e., up to aw-dependent
multiplicative prefactor this is the metric of a plane with
srectangulard periodic boundary conditions.
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